Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
J Med Virol ; 96(1): e29369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180269

RESUMO

Broad-spectrum antivirals (BSAs) have the advantageous property of being effective against a wide range of viruses with a single drug, offering a promising therapeutic solution for the largely unmet need in treating both existing and emerging viral infections. In this review, we summarize the current strategies for the development of novel BSAs, focusing on either targeting the commonalities during the replication of multiple viruses or the systemic immunity of humans. In comparison to BSAs that target viral replication, these immuno-modulatory agents possess an expanded spectrum of antiviral activity. However, antiviral immunity is a double-edged sword, and maintaining immune homeostasis ultimately dictates the health status of hosts during viral infections. Therefore, establishing an ideal goal for immuno-modulation in antiviral interventions is crucial. Herein we propose a bionic approach for immuno-modulation inspired by mimicking bats, which possess a more robust immune system for combating viral invasions, compared to humans. In addition, we discuss an empirical approach to treat diverse viral infections using traditional Chinese medicines (TCMs), mainly through bidirectional immuno-modulation to restore the disrupted homeostasis. Advancing our understanding of both the immune system of bats and the mechanisms underlying antiviral TCMs will significantly contribute to the future development of novel BSAs.


Assuntos
Antivirais , Viroses , Animais , Humanos , Antivirais/farmacologia , Quirópteros/imunologia , Quirópteros/virologia , Homeostase , Medicina Tradicional Chinesa , Viroses/tratamento farmacológico , Desenvolvimento de Medicamentos
2.
Viruses ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005825

RESUMO

Nipah virus (NiV; genus: Henipavirus; family: Paramyxoviridae) naturally infects Old World fruit bats (family Pteropodidae) without causing overt disease. Conversely, NiV infection in humans and other mammals can be lethal. Comparing bat antiviral responses with those of humans may illuminate the mechanisms that facilitate bats' tolerance. Tripartite motif proteins (TRIMs), a large family of E3-ubiquitin ligases, fine-tune innate antiviral immune responses, and two human TRIMs interact with Henipavirus proteins. We hypothesize that NiV infection induces the expression of an immunosuppressive TRIM in bat, but not human cells, to promote tolerance. Here, we show that TRIM40 is an interferon-stimulated gene (ISG) in pteropodid but not human cells. Knockdown of bat TRIM40 increases gene expression of IFNß, ISGs, and pro-inflammatory cytokines following poly(I:C) transfection. In Pteropus vampyrus, but not human cells, NiV induces TRIM40 expression within 16 h after infection, and knockdown of TRIM40 correlates with reduced NiV titers as compared to control cells. Bats may have evolved to express TRIM40 in response to viral infections to control immunopathogenesis.


Assuntos
Quirópteros , Proteína DEAD-box 58 , Infecções por Henipavirus , Proteínas com Motivo Tripartido , Animais , Humanos , Quirópteros/imunologia , Quirópteros/virologia , Imunidade Inata , Interferons/genética , Vírus Nipah/genética , Proteínas com Motivo Tripartido/metabolismo , Proteína DEAD-box 58/antagonistas & inibidores , Proteína DEAD-box 58/metabolismo
3.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172565

RESUMO

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos Virais
5.
Buenos Aires; GCBA. Ministerio de Salud; 23 sept. 2022. f:12 l:16 p. graf.(Boletín Epidemiológico Semanal: Ciudad Autónoma de Buenos Aires, 7, 318).
Monografia em Espanhol | InstitutionalDB, BINACIS, UNISALUD | ID: biblio-1532649

RESUMO

En los últimos años la positividad en el diagnóstico de rabia en quirópteros de la Ciudad de Buenos Aires se duplicó, pasando de 2.33% promedio entre 2014-2017, a 4,68% promedio del 2018 al 2021.En este Informe se analiza el comportamiento temporal de rabia en murciélagos de esta ciudad para proporcionar un pronóstico de positividad esperada para los próximos meses.


Assuntos
Humanos , Animais , Raiva/diagnóstico , Raiva/prevenção & controle , Raiva/epidemiologia , Quirópteros/imunologia , Monitoramento Epidemiológico/veterinária , Zoonoses Virais/prevenção & controle , Epidemiologia
6.
Front Immunol ; 13: 904481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677039

RESUMO

Bats are important hosts for various zoonotic viral diseases. However, they rarely show signs of disease infection with such viruses. As the first line for virus control, the innate immune system of bats attracted our full attention. In this study, the Tadarida brasiliensis MDA5 gene (batMDA5), a major sensor for anti-RNA viral infection, was first cloned, and its biological functions in antiviral innate immunity were identified. Bioinformatics analysis shows that the amino acid sequence of batMDA5 is poorly conserved among species, and it is evolutionarily closer to humans. The mRNA of batMDA5 was significantly upregulated in Newcastle disease virus (NDV), avian influenza virus (AIV), and vesicular stomatitis virus (VSV)-infected bat TB 1 Lu cells. Overexpression of batMDA5 could activate IFNß and inhibit vesicular stomatitis virus (VSV-GFP) replication in TB 1 Lu cells, while knockdown of batMDA5 yielded the opposite result. In addition, we found that the CARD domain was essential for MDA5 to activate IFNß by constructing MDA5 domain mutant plasmids. These results indicated that bat employs a conserved MDA5 gene to trigger anti-RNA virus innate immune response. This study helps understand the biological role of MDA5 in innate immunity during evolution.


Assuntos
Quirópteros , Imunidade Inata , Helicase IFIH1 Induzida por Interferon , Infecções por Vírus de RNA , Animais , Quirópteros/imunologia , Vírus da Influenza A , Helicase IFIH1 Induzida por Interferon/genética , Interferon beta , Infecções por Vírus de RNA/imunologia , Vírus de RNA
7.
PLoS One ; 17(5): e0268549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613104

RESUMO

The black flying fox (Pteropus alecto) is a natural reservoir for Hendra virus, a paramyxovirus that causes fatal infections in humans and horses in Australia. Increased excretion of Hendra virus by flying foxes has been hypothesized to be associated with physiological or energetic stress in the reservoir hosts. The objective of this study was to explore the leukocyte profiles of wild-caught P. alecto, with a focus on describing the morphology of each cell type to facilitate identification for clinical purposes and future virus spillover research. To this end, we have created an atlas of images displaying the commonly observed morphological variations across each cell type. We provide quantitative and morphological information regarding the leukocyte profiles in bats captured at two roost sites located in Redcliffe and Toowoomba, Queensland, Australia, over the course of two years. We examined the morphology of leukocytes, platelets, and erythrocytes of P. alecto using cytochemical staining and characterization of blood films through light microscopy. Leukocyte profiles were broadly consistent with previous studies of P. alecto and other Pteropus species. A small proportion of individual samples presented evidence of hemoparasitic infection or leukocyte morphological traits that are relevant for future research on bat health, including unique large granular lymphocytes. Considering hematology is done by visual inspection of blood smears, examples of the varied cell morphologies are included as a visual guide. To the best of our knowledge, this study provides the first qualitative assessment of P. alecto leukocytes, as well as the first set of published hematology reference images for this species.


Assuntos
Quirópteros , Leucócitos , Animais , Quirópteros/imunologia , Vírus Hendra , Queensland
8.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215768

RESUMO

Chemokine receptors are an important determinant for the infectiousness of different pathogens, which are able to target the host cells by binding to the extracellular domains of these proteins. This is the mechanism of infection of HIV-1, among other concerning human diseases. Over the past years, it has been shown that two chemokine receptors, CCR2 and CCR5, have been shaped by events of gene conversion in different mammalian lineages, which has been linked to a possible selective advantage against pathogens. Here, by taking advantage of available bat genomes, we present the first insight of CCR2 and CCR5 evolution within the Chiroptera order. In total, four independent events of recombination between CCR2 and CCR5 were detected: two in a single species, Miniopterus natalensis; one in two species from the Rhinolophoidea superfamily; and one in four species from the Pteropodidae family. The regions affected by the gene conversions were generally extensive and always encompassed extracellular domains. Overall, we demonstrate that CCR2 and CCR5 have been subject to extensive gene conversion in multiple species of bats. Considering that bats are known to be large reservoirs of virus in nature, these results might indicate that chimeric CCR2-CCR5 genes might grant some bat species a selective advantage against viruses that rely in the extracellular portions of either CCR2 or CCR5 as gateways into the cell.


Assuntos
Quirópteros/genética , Conversão Gênica , Genoma/genética , Receptores CCR2/genética , Receptores CCR5/genética , Sequência de Aminoácidos , Animais , Quirópteros/imunologia , Evolução Molecular , Humanos , Filogenia , Proteínas Recombinantes de Fusão , Alinhamento de Sequência
9.
Viruses ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35215832

RESUMO

A specialized and fine-tuned immune response of bats upon infection with viruses is believed to provide the basis for a "friendly" coexistence with these pathogens, which are often lethal for humans and other mammals. First insights into the immunity of bats suggest that bats have evolved to possess their own strategies to cope with viral infections. Yet, the molecular details for this innocuous coexistence remain poorly described and bat infection models are the key to unveiling these secrets. In Jamaican fruit bats (Artibeus jamaicensis), a New World bat species, infection experiments with its (putative) natural viral pathogens Tacaribe virus (TCRV), rabies virus (RABV), and the bat influenza A virus (IAV) H18N11, have contributed to an accurate, though still incomplete, representation of the bat-imposed immunity. Surprisingly, though many aspects of their innate and adaptive immune responses differ from that of the human immune response, such as a contraction of the IFN locus and reduction in the number of immunoglobulin subclasses, variations could also be observed between Jamaican fruit bats and other bat species.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Viroma , Viroses/veterinária , Imunidade Adaptativa , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/veterinária , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/isolamento & purificação , Imunidade Inata , Vírus da Influenza A/isolamento & purificação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Raiva/imunologia , Raiva/veterinária , Raiva/virologia , Vírus da Raiva/isolamento & purificação , Viroses/imunologia
10.
Viruses ; 14(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062297

RESUMO

Arboviruses have two ecological transmission cycles: sylvatic and urban. For some, the sylvatic cycle has not been thoroughly described in America. To study the role of wildlife in a putative sylvatic cycle, we sampled free-ranging bats and birds in two arbovirus endemic locations and analyzed them using molecular, serological, and histological methods. No current infection was detected, and no significant arbovirus-associated histological changes were observed. Neutralizing antibodies were detected against selected arboviruses. In bats, positivity in 34.95% for DENV-1, 16.26% for DENV-2, 5.69% for DENV-3, 4.87% for DENV-4, 2.43% for WNV, 4.87% for SLEV, 0.81% for YFV, 7.31% for EEEV, and 0.81% for VEEV was found. Antibodies against ZIKV were not detected. In birds, PRNT results were positive against WNV in 0.80%, SLEV in 5.64%, EEEV in 8.4%, and VEEV in 5.63%. An additional retrospective PRNT analysis was performed using bat samples from three additional DENV endemic sites resulting in a 3.27% prevalence for WNV and 1.63% for SLEV. Interestingly, one sample resulted unequivocally WNV positive confirmed by serum titration. These results suggest that free-ranging bats and birds are exposed to not currently reported hyperendemic-human infecting Flavivirus and Alphavirus; however, their role as reservoirs or hosts is still undetermined.


Assuntos
Alphavirus/imunologia , Animais Selvagens/imunologia , Anticorpos Antivirais/sangue , Aves/imunologia , Quirópteros/imunologia , Flavivirus/imunologia , Estudos Soroepidemiológicos , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/veterinária , Animais , Anticorpos Neutralizantes/sangue , Doenças das Aves/epidemiologia , Costa Rica/epidemiologia , Vírus da Dengue/imunologia , Reservatórios de Doenças , Feminino , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Humanos , Masculino , Testes de Neutralização , Prevalência
11.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062356

RESUMO

Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host-pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.


Assuntos
Quirópteros/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Animais , Quirópteros/virologia , Reservatórios de Doenças/virologia , Humanos , Tolerância Imunológica , Viroses/imunologia , Viroses/transmissão , Vírus/patogenicidade
12.
Front Immunol ; 12: 735866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790193

RESUMO

Bats are the only mammals with self-powered flight and account for 20% of all extant mammalian diversity. In addition, they harbor many emerging and reemerging viruses, including multiple coronaviruses, several of which are highly pathogenic in other mammals, but cause no disease in bats. How this symbiotic relationship between bats and viruses exists is not yet fully understood. Existing evidence supports a specific role for the innate immune system, in particular type I interferon (IFN) responses, a major component of antiviral immunity. Previous studies in bats have shown that components of the IFN pathway are constitutively activated at the transcriptional level. In this study, we tested the hypothesis that the type I IFN response in bats is also constitutively activated at the protein level. For this, we utilized highly sensitive Single Molecule (Simoa) digital ELISA assays, previously developed for humans that we adapted to bat samples. We prospectively sampled four non-native chiroptera species from French zoos. We identified a constitutive expression of IFNα protein in the circulation of healthy bats, and concentrations that are physiologically active in humans. Expression levels differed according to the species examined, but were not associated with age, sex, or health status suggesting constitutive IFNα protein expression independent of disease. These results confirm a unique IFN response in bat species that may explain their ability to coexist with multiple viruses in the absence of pathology. These results may help to manage potential zoonotic viral reservoirs and potentially identify new anti-viral strategies.


Assuntos
Quirópteros/sangue , Imunidade Inata , Interferon-alfa/sangue , Vírus/imunologia , Animais , Linhagem Celular , Quirópteros/genética , Quirópteros/imunologia , Quirópteros/virologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferon-alfa/genética , Especificidade da Espécie , Simbiose , Transcrição Gênica , Vírus/patogenicidade
13.
Sci Immunol ; 6(63): eabd0205, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533977

RESUMO

In humans, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is highly infective, often causes severe acute and/or long-term illness, and elicits a high rate of mortality, even in countries with sophisticated medical systems. Detailed knowledge on the immune responses underpinning COVID-19 (coronavirus disease 2019), and on strategies SARS-CoV-2 uses to evade them, can provide pivotal guidance to researchers and clinicians developing and administering potentially life-saving immunomodulatory therapies. The need for such therapies in COVID-19 is unlikely to abate soon given the emergence of variants of concern that may pose new challenges for some vaccines and neutralizing antibodies. Here, we summarize current knowledge on COVID-19 immunopathogenesis in relation to three clinical disease stages and focus on immune evasion strategies used by pathogenic coronaviruses such as skewing type I, II, and III interferon responses and inhibiting detection via pattern recognition and antigen presentation. Insights gained from bats, which exhibit minimal disease in response to SARS-CoV-2 infection, offer an informative perspective and may guide future development of new therapies. We also discuss how knowledge of immunopathology may inform therapeutic decisions, for example, on selecting the most appropriate immunotherapeutic agents and timing their administration, to reduce morbidity and mortality of COVID-19.


Assuntos
COVID-19/imunologia , Quirópteros/imunologia , Quirópteros/virologia , Fatores Imunológicos/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Humanos
14.
J Immunol ; 207(8): 2167-2178, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34535575

RESUMO

Marsupials are one of three major mammalian lineages that include the placental eutherians and the egg-laying monotremes. The marsupial brushtail possum is an important protected species in the Australian forest ecosystem. Molecules encoded by the MHC genes are essential mediators of adaptive immune responses in virus-host interactions. Yet, nothing is known about the peptide presentation features of any marsupial MHC class I (MHC I). This study identified a series of possum MHC I Trvu-UB*01:01 binding peptides derived from wobbly possum disease virus (WPDV), a lethal virus of both captive and feral possum populations, and unveiled the structure of marsupial peptide/MHC I complex. Notably, we found the two brushtail possum-specific insertions, the 3-aa Ile52Glu53Arg54 and 1-aa Arg154 insertions are located in the Trvu-UB*01:01 peptide binding groove (PBG). The 3-aa insertion plays a pivotal role in maintaining the stability of the N terminus of Trvu-UB*01:01 PBG. This aspect of marsupial PBG is unexpectedly similar to the bat MHC I Ptal-N*01:01 and is shared with lower vertebrates from elasmobranch to monotreme, indicating an evolution hotspot that may have emerged from the pathogen-host interactions. Residue Arg154 insertion, located in the α2 helix, is available for TCR recognition, and it has a particular influence on promoting the anchoring of peptide WPDV-12. These findings add significantly to our understanding of adaptive immunity in marsupials and its evolution in vertebrates. Our findings have the potential to impact the conservation of the protected species brushtail possum and other marsupial species.


Assuntos
Antígenos Virais/metabolismo , Quirópteros/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Infecções por Nidovirales/imunologia , Nidovirales/fisiologia , Peptídeos/metabolismo , Trichosurus/imunologia , Animais , Apresentação de Antígeno , Antígenos Virais/imunologia , Austrália , Evolução Biológica , Clonagem Molecular , Conservação dos Recursos Naturais , Antígenos de Histocompatibilidade Classe I/genética , Interações Hospedeiro-Patógeno , Mamíferos , Ligação Proteica , Conformação Proteica
15.
Viruses ; 13(8)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34452484

RESUMO

Given the impact of pandemics due to viruses of bat origin, there is increasing interest in comparative investigation into the differences between bat and human immune responses. The practice of comparative biology can be enhanced by computational methods used for dynamic knowledge representation to visualize and interrogate the putative differences between the two systems. We present an agent based model that encompasses and bridges differences between bat and human responses to viral infection: the comparative biology immune agent based model, or CBIABM. The CBIABM examines differences in innate immune mechanisms between bats and humans, specifically regarding inflammasome activity and type 1 interferon dynamics, in terms of tolerance to viral infection. Simulation experiments with the CBIABM demonstrate the efficacy of bat-related features in conferring viral tolerance and also suggest a crucial role for endothelial inflammasome activity as a mechanism for bat systemic viral tolerance and affecting the severity of disease in human viral infections. We hope that this initial study will inspire additional comparative modeling projects to link, compare, and contrast immunological functions shared across different species, and in so doing, provide insight and aid in preparation for future viral pandemics of zoonotic origin.


Assuntos
Quirópteros/imunologia , Imunidade Inata , Viroses/imunologia , Viroses/veterinária , Animais , Quirópteros/virologia , Simulação por Computador , Endotélio/fisiologia , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Índice de Gravidade de Doença , Estresse Fisiológico , Zoonoses Virais , Viroses/virologia , Fenômenos Fisiológicos Virais , Eliminação de Partículas Virais
16.
Viruses ; 13(8)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452513

RESUMO

The recent emergence of SARS-CoV-2 in humans from a yet unidentified animal reservoir and the capacity of the virus to naturally infect pets, farmed animals and potentially wild animals has highlighted the need for serological surveillance tools. In this study, the luciferase immunoprecipitation systems (LIPS), employing the spike (S) and nucleocapsid proteins (N) of SARS-CoV-2, was used to examine the suitability of the assay for antibody detection in different animal species. Sera from SARS-CoV-2 naturally-infected mink (n = 77), SARS-CoV-2 experimentally-infected ferrets, fruit bats and hamsters and a rabbit vaccinated with a purified spike protein were examined for antibodies using the SARS-CoV-2 N and/or S proteins. From comparison with the known neutralization status of the serum samples, statistical analyses including calculation of the Spearman rank-order-correlation coefficient and Cohen's kappa agreement were used to interpret the antibody results and diagnostic performance. The LIPS immunoassay robustly detected the presence of viral antibodies in naturally infected SARS-CoV-2 mink, experimentally infected ferrets, fruit bats and hamsters as well as in an immunized rabbit. For the SARS-CoV-2-LIPS-S assay, there was a good level of discrimination between the positive and negative samples for each of the five species tested with 100% agreement with the virus neutralization results. In contrast, the SARS-CoV-2-LIPS-N assay did not consistently differentiate between SARS-CoV-2 positive and negative sera. This study demonstrates the suitability of the SARS-CoV-2-LIPS-S assay for the sero-surveillance of SARS-CoV-2 infection in a range of animal species.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/veterinária , Vison/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , Teste Sorológico para COVID-19 , Quirópteros/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Monitoramento Epidemiológico , Furões/imunologia , Imunoprecipitação , Mesocricetus/imunologia , Fosfoproteínas/imunologia , Coelhos/imunologia , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia
17.
Microbiol Spectr ; 9(1): e0025421, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287035

RESUMO

White-nose syndrome (WNS), a fungal disease that has caused catastrophic population declines of bats in eastern North America, is rapidly spreading across the continent and now threatens previously unexposed bat species in western North America. The causal agent of WNS, the fungus Pseudogymnoascus destructans, can infect many species of hibernating bats, but susceptibility to WNS varies by host species. We previously reported that certain traits of the skin microbiome, particularly yeast diversity and abundance, of bat species in eastern North America are strongly associated with resistance to WNS. Using these traits, we developed models to predict WNS susceptibility of 13 species of western North American bats. Based on models derived from yeast species diversity, only one bat species, Myotis velifer, was predicted to be WNS resistant (i.e., may develop the disease, but with low mortality rates). We also screened yeasts found on western bats for P. destructans-antagonistic properties by spore germination and growth inhibition/competition assays and found the ability of yeasts to inhibit P. destructans in vitro to be strain specific. Similar to results of inhibition assays performed with yeasts isolated from bats in eastern North America, few yeasts isolated from bats in western North America inhibited P. destructans in vitro. Continued monitoring of western bat populations will serve to validate the accuracy of the mycobiome analysis in predicting WNS susceptibility, document population and susceptibility trends, and identify additional predictors to assess the vulnerability of naive bat populations to WNS. IMPORTANCE White-nose syndrome is one of the most devastating wildlife diseases ever documented. Some bat species are resistant to or tolerant of the disease, and we previously reported that certain traits of the skin mycobiome of bat species in eastern North America are strongly associated with resistance to WNS. Predicting which western bat species will be most susceptible to WNS would be of great value for establishing conservation priorities. Based on models derived from yeast species diversity, only one bat species was predicted to be WNS resistant. High susceptibility to WNS would pose a significant conservation threat to bats in western North America.


Assuntos
Quirópteros/microbiologia , Suscetibilidade a Doenças , Micobioma , Micoses/veterinária , Animais , Animais Selvagens/classificação , Animais Selvagens/imunologia , Animais Selvagens/microbiologia , Ascomicetos/genética , Ascomicetos/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Quirópteros/classificação , Quirópteros/imunologia , Micoses/imunologia , Micoses/microbiologia , América do Norte , Fenótipo , Pele/imunologia , Pele/microbiologia
18.
Viruses ; 13(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065574

RESUMO

Rabies is a fatal encephalitis caused by an important group of viruses within the Lyssavirus genus. The prototype virus, rabies virus, is still the most commonly reported lyssavirus and causes approximately 59,000 human fatalities annually. The human and animal burden of the other lyssavirus species is undefined. The original reports for the novel lyssavirus, Kotalahti bat lyssavirus (KBLV), were based on the detection of viral RNA alone. In this report we describe the successful generation of a live recombinant virus, cSN-KBLV; where the full-length genome clone of RABV vaccine strain, SAD-B19, was constructed with the glycoprotein of KBLV. Subsequent in vitro characterisation of cSN-KBLV is described here. In addition, the ability of a human rabies vaccine to confer protective immunity in vivo following challenge with this recombinant virus was assessed. Naïve or vaccinated mice were infected intracerebrally with a dose of 100 focus-forming units/30 µL of cSN-KBLV; all naïve mice and 8% (n = 1/12) of the vaccinated mice succumbed to the challenge, whilst 92% (n = 11/12) of the vaccinated mice survived to the end of the experiment. This report provides strong evidence for cross-neutralisation and cross-protection of cSN-KBLV using purified Vero cell rabies vaccine.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Proteção Cruzada/imunologia , Lyssavirus/imunologia , Vacina Antirrábica/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linhagem Celular , Imunização , Imuno-Histoquímica , Cinética , Lyssavirus/classificação , Lyssavirus/genética , Filogenia , Raiva/prevenção & controle , Vacina Antirrábica/administração & dosagem , Vírus da Raiva/imunologia , Soroconversão , Replicação Viral
19.
Cell ; 184(13): 3438-3451.e10, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34139177

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide, causing a global pandemic. Bat-origin RaTG13 is currently the most phylogenetically related virus. Here we obtained the complex structure of the RaTG13 receptor binding domain (RBD) with human ACE2 (hACE2) and evaluated binding of RaTG13 RBD to 24 additional ACE2 orthologs. By substituting residues in the RaTG13 RBD with their counterparts in the SARS-CoV-2 RBD, we found that residue 501, the major position found in variants of concern (VOCs) 501Y.V1/V2/V3, plays a key role in determining the potential host range of RaTG13. We also found that SARS-CoV-2 could induce strong cross-reactive antibodies to RaTG13 and identified a SARS-CoV-2 monoclonal antibody (mAb), CB6, that could cross-neutralize RaTG13 pseudovirus. These results elucidate the receptor binding and host adaption mechanisms of RaTG13 and emphasize the importance of continuous surveillance of coronaviruses (CoVs) carried by animal reservoirs to prevent another spillover of CoVs.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação/fisiologia , COVID-19/metabolismo , Quirópteros/virologia , SARS-CoV-2/patogenicidade , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , Quirópteros/imunologia , Quirópteros/metabolismo , Especificidade de Hospedeiro/imunologia , Humanos , Filogenia , Ligação Proteica/fisiologia , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Alinhamento de Sequência
20.
Viruses ; 13(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804644

RESUMO

The common vampire bat (Desmodus rotundus) is a hematophagous species responsible for paralytic rabies and bite damage that affects livestock, humans and wildlife from Mexico to Argentina. Current measures to control vampires, based upon coumarin-derived poisons, are not used extensively due in part to the high cost of application, risks for bats that share roosts with vampires and residual environmental contamination. Observations that vampire bat bites may induce resistance in livestock against vampire bat salivary anticoagulants encourage research into novel vaccine-based alternatives particularly focused upon increasing livestock resistance to vampire salivary components. We evaluated the action of vampire bat saliva-Freund's incomplete adjuvant administered to sheep with anticoagulant responses induced by repeated vampire bites in a control group and examined characteristics of vampire bat salivary secretion. We observed that injections induced a response against vampire bat salivary anticoagulants stronger than by repeated vampire bat bites. Based upon these preliminary findings, we hypothesize the utility of developing a control technique based on induction of an immunologically mediated resistance against vampire bat anticoagulants and rabies virus via dual delivery of appropriate host and pathogen antigens. Fundamental characteristics of host biology favor alternative strategies than simple culling by poisons for practical, economical, and ecologically relevant management of vampire populations within a One Health context.


Assuntos
Quirópteros/virologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/prevenção & controle , Saliva/imunologia , Vacinação , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticoagulantes/análise , Anticoagulantes/sangue , Anticoagulantes/metabolismo , Quirópteros/imunologia , Feminino , Gado , Raiva/imunologia , Vacina Antirrábica/administração & dosagem , Saliva/química , Saliva/virologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...